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Abstract 

By expressing the Green function for a many-body system in terins of a pertur- 
bative expansion written as a sum over all connected and topologically distinct 
Feynman graphs, it is shown that the number of such diagrams can be iteratively 
obtained from a Pascal-type triangle. The key to the problem is to notice that it 
is possible to define on the set of graphs an equivalence relation, and that, from a 
well-known theorem of set theory, an equivalence relation on a set partitions it 
into disjoint classes. 

Second quantization is the quantum theory technique that correct ly describes 
a system of  many particles whose total number  is not  conserved. Even if the number  

of  particles in a many-body  system is a constant of  the motion,  the technique turns 

out  to be very useful because their statistics are taken into account wi thout  the need 

tor  symmetrizing or antisymmetrizing products of  single-particle wave functions. Only 
a few cases can be solved exactly with a second-quantized Hamiltonian [1].  In general, 
one taust resort to approximate methods in which part of  the Hamiltonian is considered 
exactly soluble mld the remainder is treated as a perturbation.  In many-part icle 
physics, the perturbative expansion becomes quite cumbersome, but  can be writ ten 
in an elegant and concise tonn using the language of  Feynman diagrams [2] .  The main 
utility of  such diagrams lies in the fact that one can represent graphically various 
terms in a particular series expansion, give a physical interpretat ion to them, and 
easily per tonn  sums of  an infinite class of  perturbat ion tenns. In fact, in many-body  
theory the interaction between particles is not  necessarily weak, so that a pertur- 
bation theory in which one considers only the first tern1, or even the first few tenns,  
will not  give satisfactory results. 
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In the treatment of many-particle systems, a fundamental role is played by 
the Green function, defined as [3] 

(1) 

where ]q~) is the exact Heisenberg nonnNized ground state. This function contains 
observable properties of great interest, for from it one can compute expectation values 
of any single-particle operator in the ground stare of the system and the ground-state 
energy of the total Hamiltonian H. The construction of the Green function for a non- 
trivial physical system is, however, a fonnidable task, and the usual approach is to use 
perturbation techniques. 

The perturbative approach splits the Hamiltonian into two parts, 

H = Ho(t ) + H/(t) ,  ~2) 

where the problem for H o is assumed to be already solved. Perturbative techniques 
are most conveniently applied in the interaction picture (herein denoted by a tilde) 
in which the displaceinent operator satisfies the integral equation 

Ü( t , t  o ) = Texp i d t 'Hr ( t '  , (3) 

i.. ~¢ 

where 7" is the time-ordering operator. 
For a two-body interaction V(x~, x= ), such as the mutual Coulombic repulsion 

among the electrons in a molecule, eq. (1) becomes 

iG«d(z.~,) [ (01Nl0 ) ] - l / .  o , ( - i )  2 d 4 d 4 « ,  . = |IG&B(~"Y) + ?~ E Xl 9(2 lxx ~/.u '(Xl x2)  
xx'  

~tH' 

X <OIT[F~~(Xl)~]l(x:)Fù,(x2)~x,(xl)~a(z)@Cv)] 10> +.. .} ,  

where we have defined 

(4) 

and 

S - U ( + ~ , - ~ )  (151 

V ( x 1 X 2 )  = (~([ l  -- [2)V(Xl x 2 ) -  ( 6 )  
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We then see that, in order to compute the nth-order contribution to Gotts(z, y), we 
must find the expectation value in the unperturbed ground state 10) of the time- 
ordered product o f4n  + 2 ladder operators of the form 

<01T[gr... ?T«(~)~»t(»,)] 10>. (7) 
4 t l  

To compute those kinds of terms, we make use of Wick's theorem [4], according to 
which, if we define the contraction between two operators A and B as 

A B  = T ( A B )  - X ( A B > ,  

then 

T(ABC. . .XYZ)  = N(ABC. . .XYZ ) + N [ Z  all possible pairs of contractionsl, (8) 

where N is the normal ordering operator which arranges the product AB so that the 
creation operator is on the left and the destruction operator on the right. Clearly, 
given that in eq. (4) we compute vacuum expectation values, terms of the type (7) 
become 

( 0 t T [ ~ r . . .  ~~C~(Z)~'~e(y)] IO) = ~ all fully contracted terms. (9) 

Each contraction gives a Green function, so for the nth order there are 2n + 1 Green 
ffmctions and n interactions integrated over all internal coordinates. Therefore, there 
are (2n + 1)! tenns in the sum. 

It is possible to give a pictorial representation for these terms by generating 
what are bettet known as Feynman diagrams. Such diagrams are constructed by 
means of the following correspondence: (i) a dot for each coordinate which is inte- 
grated over; (ii) a wavy line between two dots for each corresponding interaction; 
(iii) an oriented segment for each free Green function. It is possible to show that, in 
the numerator of eq. (4), the vacuum polarization graphs can be factorized out and 
cancel exactly, at any order, with the denominator (01SI 0), so that only the connected 
diagrams contribute to the Green function [5]. Among the connected diagrans, the 
topologically equiv'~ent ones give the same numerical value, so that in order to write 
the Green function to any given order, one taust follow a set of rules. The first of 
these rules is: write all topologicatly distinct connected Feynman diagrams. Other 
rules give a prescription of how to associate with each geometrical element of a 
diagram a unique analytic expression. Equation (4) then becomes 

o o  

i G « ~ ( z , y ) =  Z ( - 2 i ) "  d t  

n = 0  - c o  

( 0 1 T [ l / ( t l ) . .  V(tn)O¢«(z)O/~(y)] 10)', (10) 
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where the prime stands %r "connected and topologically distinct". 
We are now in a position to present a rule for the total number of topologically 

distinct diagrams that can be drawn for a system of many identical fermions inter- 
acting via a two-body potential [6]. Let Ä?(n), C(n) and D(n)  be, respectively, the 
sets of  Hth-order diagrams, connected diagrams, and disconnected diagrmns, and let 
N( t0 ,  C(n) and D(n)  be the number of diagrams in those sets: 

Y(~7) = ~(n) u D(ù) ,  (1 i) 

N(n)  = C(n) + D(n).  (12) 

In order to find C(n), we recognize that it is possible to define in A:00 a partition 
into disjoint classes. Such a partition is perfonned by means of the following relation 
Æp defined in Ä?(n): two nth-order diagrams belonging to )~7(n) belong to the relation 
Rp if and only if p is the total number of interactions appearing in the connected 
part of the diagram which contains ~o:(z) and ~~( ' ) .  It is straightforward to realize 
that Rp is an equivalence relation (i.e. it is reflexive, symmetric, and transitive) and 
therefore defines in 5;(n) a partition into disjoint classes. Obviously, 0 ~ p ~ n, so 
that in N0z)  there are n + 1 classes. Indicating by @(n) the number of nth-order 
terms belonging to the class p, we can write 

t l -  1 

d,,(ù) = C(ù )  = N( iz)  - ~ ~/p(~7). 
p = 0  

(13) 

Denoting a free Green function by a set of parentheses ( , ) ,  each ofwhich contains a 
pair of  4-space coordinates, we can write a generic tern1 of order tl belonging to the 
class p as 

(x, ) ( , ) . . . ( , ) ( , 3 , ) ( , ) . . . ( , )  

2 t ) + 1 2 (»2-p)  

and 

dp(n) = (number of terms of order p belonging to class p) 

X (number of pemmtations of 2(n - p )  intemal coordinates) 

× (number of ways of connecting n interactions in groups of p) 

= (2/) + 1)! - dk(p) [2(n - l ) ) ] !  , 
k = 0  

(141) 
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c ( , , )  = ( 2 r , + l ) !  - ~ [ 2 ( n - l ) ) ] !  2p 
p = O  

+ 1)! - dk(p) .(15) 
k = O  

We note that eq. (14) gives the number of disconnected diagrams of order n and 
class p in tenns of  the number of disconnected diagrams of lower order, provided 
p < rz. For p = /z, the equation simply says that d,,(n) = C(n) is  given by subtracting 
the total number of disconnected diagrams from the total number of diagrams. For 
this reason, we give both eqs. (14) and (15), where the latter gives C(n) in terms of 
dk(p) with p < n. In order to obtain topologically distinct diagrams, we note that: 
(i) the number of permutations of lz interactions is t~!, and (ii) the number of ways the 

n)  = 2".  The coordinates in each interaction can be interchanged is given by 13~= o (p 
number of  topologically distinct Feynman graphs for a many-fennion system inter- 
acting via a two-body potential is thus 

F(n) = C(n) /n !2" ,  (16) 

which is tabulated in table 1 for values of n up to 7. 

Table 1 

Number of  topologically distinct Feynman graphs up to 7th order 

n 0 1 2 3 4 5 6 7 

F ( n )  1 2 10 74 706 8 162 110410  1 7 0 8 3 9 4  

It is interesting to observe that in order to obtain the number C(n) ofconnected 
diagrams at a given order n according to eq. (13), one could construct a Pascal-type 
triangle. More than being a mere curiosity, this is very helpful in the numerical evalu- 
ation of  C(n), which can be somewhat troublesome due to the abundance of factorials 
appearing in eqs. (14) and (15). C(n) can instead be directly read along the diagonal 
of the triangle, which is constructed, row by row, by making a direct product of three 
numerical triangles and by following rules that are obviously obtained from a glance 
at table 2, where the triangle is shown up to n = 4. 

From table 1, we see that the number of  topologically distinct diagrams grows 
rapidly, and it has been shown [7] that F(iz) grows asymptotically as (2n + 1)!!. One 
could therefore question the practicality of taking the approach of computing the 
perturbation expansion terms up to a given order n, even for a small v'~ue of  n. The 
answer to this question depends on the specific problem one is dealing with. 
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Table 2 

Pascal-type triangle for the number of connected Feynman graphs. C(p) is obtained by subtracting 
from 12p + 1)! the sulII of the first p terms of the n = p row 

n P 0 1 2 3 4 

0 1 

1 2!(Ò) C(1) 

2 4!(g) «(1)2!(~ ) 

3 6!( 3 ) C(1)4!(~ ) 

4 8!(~) C(1)6!(~) 

C(2) 

C(2)2!(~ ) 

c{2)4!(~) 

C(3) 

C(3)2!(~ ) c(4) 

It could happen that. under certain physical conditions to be specified case by 
case, the perturbation series converges quickly, so that one might still want to compute 
all the terms in the perturbation expansion until convergence is achieved. In such a 
situation, even though those tenns might seem to be large in number, the problem is 
usually still within the capabilities of the computing facilities currently available. For 
example, we have successfully applied such an approach to model a charge-transfer 
process in ion-surface scattering [8,9].  Hefe, the utility of a general formula for the 
number of topologically distinct diagrams involved in the description of the process 
was shown, mad the conditions under which the perturbation expansion converges 
quickly were given. 

ttowever, it might also happen that one has to face the difficulties of an 
extremely poor convergence of the perturbation series. In such a case, the diagrmnmatic 
approach is, m general, totally different: one looks for suitable classifications of the 
various tenns and retains only the most important classes. Even in this situation, one 
must usually deal with a new diagrammatic expansion in which each diagram might 
represent an infinite number of diagrams in the original expression [eq. (10)],  where 
the problem of counting diagrams might still arise. Hence, the approach suggested by 
us would again be helpful. 

In conclusion, our alm in this paper has been to point out to the chemistry 
community a general approach that might be taken whenever one is interested in 
counting diagrams, regardless of whether they arise from the perturbation expansion 
of  the Schrödinger equation or from the virial expression for real gases, or from any 
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other problem treated by iterative techniques. The common rule is to first find the 
appropriate equivalence relationship on the set of diagrams at hand. We have shown 
that our method, applied to a many-electron system, yields the same results as given 
by other methods, such as functional derivative ones [7]. Finally, the possibility of 
building up a Pascal-type triangle allows an easy listing of the number of diagrams in 
each of the classes generated by the equivalence relationship, and an easy way of 
numerically generating F(n). 
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